34 research outputs found

    Effects of Freeplay on Dynamic Stability of an Aircraft Main Landing Gear

    Get PDF

    On the Geometrically Exact Low Order Modelling of a Flexible Beam:Formulation and Numerical Tests

    Get PDF
    This paper proposes a low order geometrically exact flexible beam formulation based on the utilisation of generic beam shape functions to approximate distributed kinematic properties of the deformed structure. The proposed nonlinear beam shapes approach is in contrast to the majority of geometrically nonlinear treatments in the literature in which element based --- and hence high order --- discretisations are adopted. The kinematic quantities approximated specifically pertain to shear and extensional gradients as well as local orientation parameters based on an arbitrary set of globally referenced attitude parameters. In developing the dynamic equations of motion, an Euler angle parameterisation is selected as it is found to yield fast computational performance. The resulting dynamic formulation is closed using an example shape function set satisfying the single generic kinematic constraint. The formulation is demonstrated via its application to the modelling of a series of static and dynamic test cases of both simple and non-prismatic structures; the simulated results are verified using MSC Nastran and an element-based intrinsic beam formulation. Through these examples it is shown that the nonlinear beam shapes approach is able to accurately capture the beam behaviour with a very minimal number of system states

    Numerical Continuation of Limit Cycle Oscillations and Bifurcations in High-Aspect-Ratio Wings

    Get PDF
    This paper applies numerical continuation techniques to a nonlinear aeroelastic model of a highly flexible, high-aspect-ratio wing. Using continuation, it is shown that subcritical limit cycle oscillations, which are highly undesirable phenomena previously observed in numerical and experimental studies, can exist due to geometric nonlinearity alone, without need for nonlinear or even unsteady aerodynamics. A fully nonlinear, reduced-order beam model is combined with strip theory and one-parameter continuation is used to directly obtain equilibria and periodic solutions for varying airspeeds. The two-parameter continuation of specific bifurcations (i.e., Hopf points and periodic folds) reveals the sensitivity of these complex dynamics to variations in out-of-plane, in-plane and torsional stiffness and a ‘wash out’ stiffness coupling parameter. Overall, this paper demonstrates the applicability of continuation to nonlinear aeroelastic analysis and shows that complex dynamical phenomena, which cannot be obtained by linear methods or numerical integration, readily exist in this type of system due to geometric nonlinearity

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
    corecore